Phytoplankton response to intrusions of slope water on the West Florida Shelf: Models and observations

John J. Walsh,1 Robert H. Weisberg,1 Dwight A. Dieterle,1 Ruoying He,1 Brian P. Darrow,1 Jason K. Jolliff,1 Kristen M. Lester,1 Gabriel A. Vargo,1 Gary J. Kirkpatrick,2 Kent A. Fanning,1 Tracey T. Sutton,1 Ann E. Jochens,3 Douglas C. Biggs,3 Bisman Nababan,1 Chuanmin Hu,1 and Frank E. Muller-Karger1

Received 25 March 2002; revised 6 December 2002; accepted 6 February 2003; published 14 June 2003.

[1] Previous hypotheses had suggested that upwelled intrusions of nutrient-rich Gulf of Mexico slope water onto the West Florida Shelf (WFS) led to formation of red tides of Karenia brevis. However, coupled biophysical models of (1) wind- and buoyancy-driven circulation, (2) three phytoplankton groups (diatoms, K. brevis, and microflagellates), (3) these slope water supplies of nitrate and silicate, and (4) selective grazing stress by copepods and protozoans found that diatoms won in one 1998 case of no light limitation by colored dissolved organic matter (CDOM). The diatoms lost to K. brevis during another CDOM case of the models. In the real world, field data confirmed that diatoms were indeed the dominant phytoplankton after massive upwelling in 1998, when only a small red tide of K. brevis was observed. Over a 7-month period of the CDOM-free scenario the simulated total primary production of the phytoplankton community was $1.8 \text{ g C m}^{-2} \text{ d}^{-1}$ along the 40-m isobath of the northern WFS, with the largest accumulation of biomass on the Florida Middle Ground (FMG). Despite such photosynthesis, these models of the WFS yielded a net source of CO$_2$ to the atmosphere during spring and summer and suggested a small sink in the fall. With diatom losses of 90% of their daily carbon fixation to herbivores the simulation supported earlier impressions of a short, diatom-based food web on the FMG, where organic carbon content of the surficial sediments is tenfold those of the surrounding seabeds. Farther south, the simulated near-bottom pools of ammonium were highest in summer, when silicon regeneration was minimal, leading to temporary Si limitation of the diatoms. Termination of these upwelled pulses of production by diatoms and nonsiliceous microflagellates mainly resulted from nitrate exhaustion in the model, however, mimicking most del$_{15}$PON observations in the field. Yet, the CDOM-free case of the models failed to replicate the observed small red tide in December 1998, tagged with the del$_{15}$N signature of nitrogen fixation. A large red tide of K. brevis did form in the CDOM-rich case, when estuarine supplies of CDOM favored the growth of the shade-adapted, ungrazed dinoflagellates. The usual formation of large harmful algal blooms of $>1 \text{ ug chl L}^{-1}$ (105 cells L$^{-1}$) in the southern part of the WFS, between Tampa Bay and Charlotte Harbor, must instead depend upon local aeolian and estuarine supplies of nutrients and CDOM sun screen, not those from the shelf break. In the absence of slope water supplies, local upwelling instead focuses nitrate-poor innocula of co-occurring K. brevis and nitrogen fixers at coastal fronts for both aggregation and transfer of nutrients between these phytoplankton groups.

KEYWORDS: predicting redtides, West Florida Shelf ecology

rent water [Haddad and Carder, 1979; Tester and Steidinger, 1997]. However, our prior analysis of upwelling events that penetrated to the 40-m isobath of the WFS during 1958–1961 found no associated biomass increments of *K. brevis* [Walsh and Steidinger, 2001]. The outcome of competition among those phytoplankton populations was then unknown, since only cell counts of the toxic dinoflagellate were made. Using a numerical model of three phytoplankton groups of diatoms, flagellates, and *K. brevis*, subjected to selective grazing stress by copepods and protozoans, the algal community’s response to slope water nutrient supplies, induced by wind and buoyancy forcings, was thus examined during 7 months of 1998, when validation data were obtained.

[3] As part of our NOAA/EPA ECOHAB (Ecology and Oceanography of Harmful Algal Blooms) study, a series of 17 cross-shelf sections were taken off Sarasota, FL during March 1998 to February 1999 (Figure 1), involving measurements of temperature, salinity, nutrients (NO₃, NO₂, NH₄, PO₄, SiO₄, Fe, DOP, DON), O₂, chlorophyll, phaeopigments, PON, POC, POP, CDOM fluorescence/absorption, and the dominant species of phytoplankton and zooplankton. Additional data were collected here during June, August, and September 1998 as part of the ONR HyCODE (Hyperspectral Coastal Ocean Dynamics Experiment) program. Farther to the north, quarterly surveys of the MMS NEGOM (Northeastern Gulf of Mexico) project provided the upstream conditions across 11 other sections during May, July–August, and November 1998.

[4] Since nitrogen fixation by co-occurring *Trichodesmium* may be another source of “new” nitrogen for WFS red tides [Walsh and Steidinger, 2001; Lenes et al., 2001], the del¹⁵N of PON was also measured on the ECOHAB cruises. In prior field studies of water parcels shed by a western boundary current, the temporal change of the ¹⁵N content of phytoplankton PON was attributed to less fractionation during their uptake of smaller amounts of available nitrate [Altabet and McCarthy, 1985]. During the initial process of nitrate or ammonium uptake, the algae discriminate against ¹⁵N such that the del¹⁵N of their PON, where del¹⁵N(%) = (¹⁵N/¹⁴N)(air standard) – 1 × 1000, is smaller than the nitrogen source after their assimilation of ¹⁴N.

[5] If we consider an upwelled parcel of slope water to be a closed system, as it drifts onshore toward the west coast of Florida, the final del¹⁵N of phytoplankton PON should be that of the initial dissolved stocks, after uptake of the progressively enriched ¹⁵N of nitrate left behind in the water column [Mariotti et al., 1981]. The upstream western boundary current that becomes the Loop Current after passage through Yucatan Straits has a range of del¹⁵NO₃ values, from +6.7% to +8.3% over depths of 200–500 m on the Venezuelan slope [Liu and Kaplan, 1989], such that WFS phytoplankton grown on nitrate-depleted Loop Current water might have a similar del¹⁵PON. We base this assumption on identical relationships of temperature, salinity, and nitrate within the aphotic zones of the NEGOM study in the Gulf of Mexico [Jochens and Nowlin, 1999] and the WOCE study of the southern Caribbean Sea [Weisberg and He, 2003]. In contrast, *Trichodesmium* has a del¹⁵PON of −0.8% [Minagawa and Wada, 1986].

[6] During spring 1998, ‘anomalous’ west winds (Figure 2) led to strong upwelling along the Florida Panhandle

Figure 1. Station locations of the ECOHAB (open circles), MOTE (open triangles), and NEGOM (open squares) surveys of the West Florida Shelf in relation to HyCODE current meter moorings (solid circles), COMPS sea level gauges (solid hexagons), and NDBC wind buoys (solid squares) during March 1998 to December 1999.
Muller-Karger, 2000], such that the May 1998 sea surface temperatures near Pensacola, Florida, at the head of DeSoto Canyon (Figure 1), were 2°C–4°C colder than either on the Alabama shelf at this time, or in the same region during May 1999. Consequently, the near-bottom isopleth of 1 umol NO$_3$ kg$^{-1}$ penetrated to the ~20-m isobath in the Panhandle, Big Bend, and Southeastern regions of the WFS by May 1998 (Figure 3a). In contrast, a near-bottom stock of 1 umol NO$_3$ kg$^{-1}$ was only found at the ~65-m isobath of these regions during May 1999, 2000, and 2001. Thus, at 16 stations on the 10–50-m isobaths between Apalachicola and Tampa Bays, the mean near-bottom stock was 3.13 umol NO$_3$ kg$^{-1}$ in May 1998, compared to 0.11 umol NO$_3$ kg$^{-1}$ in May 1999 (Table 1). In an ecological model, coupled to the three-dimensional Princeton Ocean Model [Weisberg and He, 2003], we simulated the phytoplankton response to such nitrate-rich intrusions during May, September, and October/November 1998 (Figure 4b).

2. Methods
2.1. Observations
[7] Cross-shelf ECOHAB sections were taken along the Sarasota line past five HyCODE ADCP arrays, moored on the 10, 20, 25, and 30, and 50-m isobaths (Figure 1), such that the temperature (Figure 4a) and salinity observations used in this analysis are from both the ADCP arrays and the CTD casts on discrete stations. At these hydrographic stations, micromolar levels of inorganic nutrients (NO$_3$, NO$_2$, PO$_4$, SiO$_4$) were determined with standard methods [Atlas et al., 1971; Gordon et al., 1994], while nanomolar

Figure 2. Spatial patterns of wind stresses (dynes cm$^{-2}$) used to force (a) 1998 upwelling events of varying intensity in relation to (b) the 20-year climatological mean during 1979–1998 and locations of NDBC buoys (solid circles) along the Panhandle and west coasts of Florida.

Figure 3. A seasonal composite of the near-bottom fields (µmol kg$^{-1}$) of nitrate + nitrite found by ECOHAB/NEGOM surveys of the West Florida Shelf during (a) spring, (b) summer, and (c) fall 1998.
levels of NO₃ and NO₂ were detected with a fluorescence technique [Masserini and Fanning, 2000]. To provide a consistent data set, we report the results of nitrate + nitrite measurements as umol NO₃ kg⁻¹ (Figure 3). Urea was only measured on the NEGOM cruises [Aminot and Kerovelen, 1982]. Ammonium, however, was again determined at micromolar [Slawyk and MacIsaac, 1972] and nanomolar [Masserini and Fanning, 2000] levels.

CDOM (colored dissolved organic matter) fluorescence at 450 nm wavelength was measured in relation to underway conductivity and temperature data. Discrete estimates of CDOM absorption were obtained by spectrometric analyses of samples filtered through GF/F and 0.2 um nucleopore membrane filters [Del Castillo et al., 2000; Hu et al., 2003]. Satellite estimates of CDOM were also made with the MODIS algorithm [Carder et al., 1999].

Table 1. Mean Interannual and Seasonal Variation of Nutrient Pools in the Big Bend (BB) Region, Upstream of the ECOHAB Site on the West Florida Shelf, in Relation to del¹⁵N (%o) of Surface Particulate Matter, Between Tampa Bay and Charlotte Harbor, During 1998/1999

<table>
<thead>
<tr>
<th></th>
<th>Near-Surface (n = 25) BB Above the 10–200 m Isobaths</th>
<th>Near-Bottom (n = 16) BB Above the 10–50 m Isobaths</th>
<th>Surface ECOHAB (n = 6) Above the 10–50 m Isobaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1998/1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate + nitrite</td>
<td>0.17/0.12</td>
<td>3.13/0.11</td>
<td>...</td>
</tr>
<tr>
<td>Urea</td>
<td>0.17/0.12</td>
<td>3.13/0.11</td>
<td>...</td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.13/0.09</td>
<td>0.39/0.12</td>
<td>...</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.04/0.04</td>
<td>0.20/0.05</td>
<td>...</td>
</tr>
<tr>
<td>Silicate</td>
<td>1.18/1.24</td>
<td>4.02/1.62</td>
<td>...</td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>June 1998/1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>July 1998/1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>7.95/4.68</td>
</tr>
<tr>
<td>August 1998/1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate + nitrite</td>
<td>0.13/0.14</td>
<td>0.48/0.13</td>
<td>...</td>
</tr>
<tr>
<td>Urea</td>
<td>0.19/0.09</td>
<td>0.21/0.09</td>
<td>...</td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.16/0.13</td>
<td>0.20/0.18</td>
<td>...</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.05/0.04</td>
<td>0.11/0.06</td>
<td>...</td>
</tr>
<tr>
<td>Silicate</td>
<td>1.27/0.76</td>
<td>2.21/1.89</td>
<td>...</td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>2.74/3.79</td>
</tr>
<tr>
<td>September 1998/99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>9.17/3.82</td>
</tr>
<tr>
<td>October 1998/99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>3.56/4.97</td>
</tr>
<tr>
<td>November 1998/99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate + nitrite</td>
<td>0.16/0.09</td>
<td>0.75/0.19</td>
<td>...</td>
</tr>
<tr>
<td>Urea</td>
<td>0.09/0.13</td>
<td>0.07/0.09</td>
<td>...</td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.07/0.06</td>
<td>0.15/0.11</td>
<td>...</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.03/0.04</td>
<td>0.06/0.04</td>
<td>...</td>
</tr>
<tr>
<td>Silicate</td>
<td>0.93/1.00</td>
<td>1.52/1.08</td>
<td>...</td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>6.80/3.03</td>
</tr>
<tr>
<td>December 1998/99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>del¹⁵PON</td>
<td>...</td>
<td>...</td>
<td>5.81/5.25</td>
</tr>
</tbody>
</table>

*Interannual and seasonal variation are in umol kg⁻¹, and del¹⁵N are in per mil.

Surface colonies of *Trichodesmium* had del¹⁵N values of ~0.82 to ~0.57%o in September and October 2000.

*A mean value of 7.97%o within nitrate-depleted waters.

* del¹⁵N values of 4.45 and 4.18%o were found for blooms of diatoms near-bottom at the 30-m isobath and near-surface at the mouth of Tampa Bay in October 2000. *Rhizosolenia* spp. were a dominant group.

*Red tides of *Karenia brevis* had values of 3.63%o at their chlorophyll biomass of ~0.5 ug chl l⁻¹ in October 2000, 4.37%o at ~1.0 ug chl l⁻¹ in October 1999, 4.88%o at ~5.0 ug chl l⁻¹ in December 1998, and 5.11%o at ~25.0 ug chl l⁻¹ in October 2000, assuming a cellular content of 1 x 10⁻⁵ ug chl cell⁻¹.

[8] Extracted chlorophyll stocks were measured with both the Holm-Hansen/Welschmeyer fluorometric protocols [Hell et al., 2002] and HPLC assays [Wright et al., 1991], which yielded similar estimates of the amount of chlorophyll a. These data were used to calibrate the ECOHAB and NÉGOM underway maps (Figure 5) of surface chlorophyll fluorescence, with an r² of ~0.90 [Hu et al., 2003], which in turn calibrated satellite imagery. To save space, we refer the reader to the USF-archived time series of 1998 SeaWiFS color images, but highlight a critical finding on both contamination of the imagery and shading of phytoplankton competitors by CDOM.

[10] A comparison of the standard SeaWiFS estimate [O’Reilly et al., 1998] of surface pigment stocks with the underway data (Figure 5) indicated as much as an approximately fivefold overestimate of phytoplankton biomass by
2.2. Ecological Model

Coupled models. Scenarios of the presence and absence of CDOM in the upwelled nutrients would then be severely light-limited, if m of the water column. Phytoplankton utilization of the upper 10 m of the water column during November 1998. A difference of 0.034 m² (mg chl)⁻¹, similar to two of the model’s functional groups (Table 2), would yield a possible CDOM attenuation of ~0.136 m⁻¹ on the WFS during spring 1998. At this time, the surface salinities within ~100 km of the coast were 3–4 psu lower than in May 1999, suggesting anomalous west winds both upwelled water and led to large freshwater runoff after the 1997–1998 El Nino [Muller-Karger, 2000].

A larger CDOM value of 0.156 m⁻¹ was measured at a salinity of 34.0 psu [Hu et al., 2003], which was the mean salt content over a 10-m thick river plume, found over large areas of the WFS during August 1998 [Jochens and Nowlin, 1999]. With a cosine of the subsurface solar zenith angle of 0.82, such a CDOM attenuation coefficient of 0.190 m⁻¹ would lead to an 85% loss of blue light within the upper 10 m of the water column. Phytoplankton utilization of the upwelled nutrients would then be severely light-limited, if estuarine CDOM were present, such that we considered two scenarios of the presence and absence of CDOM in the coupled models.

2.2. Ecological Model

In the absence of much CDOM, a previous 1-dimensional [Walsh et al., 2001] model of phytoplankton competition on the WFS found that diatoms won, when a simulated community of small and large diatoms, coccolid cyanophytes, nitrogen-fixing Trichodesmium, nontoxic and red tide dinoflagellates, microflagellates, and coccolithophores were subjected to estuarine and/or slope water supplies of nitrate. Thus they were our first choice of this 3-D study and the details of their niche, i.e., the parameter values of Table 2, are discussed in Appendix A.

To evaluate a second hypothesis of delayed red tide initiation from near-bottom recycled nitrogen (Figure 6) after intrusions of slope water (note that mean stocks of both urea and ammonium were twofold to threefold higher in May 1998 than in May 1999 (Table 1)) the second phytoplankton variable of slow growing, dark-adapted, migratory K. brevis was allowed to harvest NH₄ at a greater affinity than the diatoms (Table 2).

The mean NO₃/SiO₄ ratio of near-bottom slope waters at a depth of 200 m of the NEGOM stations was 2.0 (n = 98), such that after diatoms removed half of the nitrate, no silicate would be left. The near-bottom NO₃/PO₄ ratio at this shelf-break was instead a Refield one of ~16.6, ensuring additional growth of other phytoplankton within upwelled slope waters. Thus a third functional group of nanoplankton microflagellates was included in our model to reflect the background populations of nonsiliceous phytoplankton, identified from the HPLC analyses.

2.3. Numerical Experiments

Our present application of the Princeton Ocean Model (POM) used ~2-km horizontal resolution and 21 vertical sigma layers over a curvilinear grid, extending from west of the Mississippi River to the Florida Keys. It was forced by wind stresses (Figure 2) and heat fluxes at the surface and by river inflows at the coast. The open boundary was sufficiently far from the shelf break to insure that the radiation conditions there did not impact the computed WFS flows.

In the absence of an imposed Loop Current, however, vectors within the bottom Ekman layer of the POM were much slower than those observed [Weisberg and He, 2003]. Imposition of an offshore pressure distribution, in the form of sea level perturbation [He and Weisberg, 2003] along the open boundary, alleviated this problem. We thus used the POM, with and without the Loop Current, to drive the ecological model, with and without CDOM, in a series of numerical experiments over a period of ~215 days. Using the spring, summer, and fall NEGOM data on temperature, salinity, nutrients, and chlorophyll a as upstream boundary conditions across the Pensacola section (Figure 1), we computed the downstream distributions of u, v, w, Kz, T, S, PAR (z), NO₃, NH₄, SiO₄, chlorophyll biomass of diatoms, K. brevis, and flagellates, and carbon content of copepod and protozoan pellets under seasonal wind (Figure 2a) and freshwater forcings.

The offshore boundary conditions of the biochemical variables were daily interpolations of the NEGOM and
ECOHAB data along the 200-m isobath. At the coast, we only added the interpolated daily estimates of buoyancy fluxes [He and Weisberg, 2002], and not the organic (CDOM) and inorganic nutrient supplies, from seven rivers (Mississippi, Mobile, Apalachicola, Suwannee, Hillsborough, Peace, and Shark) to the top sigma level of the grid cells adjacent to the shoreline [Kourafalou et al., 1996]. The river inflows were thus climatological estimates, not those of 1998, such that any unusual low salinities and associated light-filtering CDOM in the POM were the result of advection and not due to interannual variations of freshwater loadings.

[18] Based upon ~120 nearshore measurements of CDOM absorption and salinity [Del Castillo et al., 2000; Hu et al., 2003], with an assumed spectral slope for CDOM of 0.020 nm⁻¹, we specified blue light attenuation of CDOM from POM’s salinity field, SAL, at each grid point by

\[
\text{CDOM(443)} = 3.470 - 0.095 \times \text{SAL}; \text{SAL} = 28.0 - 36.5 \\
= 0.892 - 0.003 \times \text{SAL}; \text{SAL} = 24.0 - 28.0 \\
= 2.250 - 0.060 \times \text{SAL}; \text{SAL} = 0.0 - 24.0
\]

The Loop Current scenario of the POM included this CDOM forcing in the first case, while the absence of both Loop Current and CDOM constituted the second case. We thus ignored both photolysis and any sources of marine CDOM.

3. Results
3.1. Spring Shading: Shelf-Wide CDOM Export
3.1.1. Observations
[19] During March–May 1998, the wind field (Figure 2a) was anomalous, compared to the climatological state (Figure 2b), with persistent west, upwelling favorable winds along the Panhandle coast of Florida. Within the salinity maximum of ~36.6 at a depth of ~125 m in slope waters of DeSoto Canyon, the temperature during 12 May 1998 was ~19°C [Jochens and Nowlin, 1999], with nutrient stocks of 6.9 umol NO₃ kg⁻¹, 3.6 umol SiO₄ kg⁻¹, 0.34 umol PO₄ kg⁻¹, and an algal stock of ~0.08 ug chl L⁻¹. The urea and ammonium stocks were then each minimal at ~0.03 umol N kg⁻¹, compared to tenfold larger amounts on the shelf (Table 1).

[20] Similar hydrographic (36.6, ~19°C), reduced chemical (5.2 umol NO₃ kg⁻¹, 2.9 umol SiO₄ kg⁻¹, 0.27 umol PO₄ kg⁻¹), and higher phytoplankton (0.95 ug chl L⁻¹) values were found in bottom waters at the 45-m isobath off Sarasota during 9 June 1998. Using a diatom PN/chl ratio of 0.6 (C/chl ratio of Table 2 and Redfield C/N of 6.67), the biomass increment of 0.87 ug chl L⁻¹ was equivalent to a depletion of 1.5 umol NO₃ kg⁻¹ during transit. An initial concentration of 6.7 umol NO₃ kg⁻¹ within this water parcel on the shelf would thus be about the same as that found at the salinity maximum within May slope waters, suggesting a recent intrusion of upwelled water, perhaps in May (Figure 3a), if not earlier.

[21] Within shallower waters of presumed greater light penetration, the initial algal stocks of <0.5 ug chl L⁻¹ at the 30-m isobath in late March grew to 3.4 ug chl L⁻¹ by 6 June and 10.6 ug chl L⁻¹ on June 22 (Figure 4c), when <0.1 umol NO₃ kg⁻¹ was found (Figure 4b). Note that the diatom PN/chl ratio of 0.6 and depletion of 6 umol NO₃ kg⁻¹ would yield a near-bottom biomass of 10 ug chl L⁻¹, providing a consistent chemical mass balance for transit of an upwelled water parcel from a depth of ~125 m on the
Table 2. Model Parameters for Competition Among Diatoms, Microflagellates, and K. brevis \([i = d, f, b]\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Value</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_i)</td>
<td>([0.275, 0.225, 0.100]) (e^{0.05T})</td>
<td>Maximum algal growth rate as a function of temperature, (T), ((d^{-1}))</td>
</tr>
<tr>
<td>(g_i)</td>
<td>([0.01, 0.005, 0.0])</td>
<td>Realized algal growth rate as a function of light and nutrient ((d^{-1}))</td>
</tr>
<tr>
<td>(g_i, \text{NO}_3)</td>
<td>([0.01, 0.005, 0.0])</td>
<td>Realized uptake rate of nitrate ((d^{-1}))</td>
</tr>
<tr>
<td>(g_i, \text{NH}_4)</td>
<td>([0.005, 0.0, 0])</td>
<td>Realized uptake rate of ammonium ((d^{-1}))</td>
</tr>
<tr>
<td>(g_i, \text{SiO}_4)</td>
<td>([1.15, 0.0, 0])</td>
<td>Realized uptake rate of silicate ((d^{-1}))</td>
</tr>
<tr>
<td>(L(t, z))</td>
<td>[43.2, 62.5, 14.8]</td>
<td>Photosynthetic active radiation ((\text{PAR})) over time and depth ((\text{W m}^{-2}))</td>
</tr>
<tr>
<td>(L_i)</td>
<td>([43.2, 62.5, 14.8])</td>
<td>Saturation (optimal) light intensity for growth ((\text{W m}^{-2}))</td>
</tr>
<tr>
<td>(I_p)</td>
<td>([43.2, 62.5, 14.8])</td>
<td>Maximum noon radiation ((\text{W m}^{-2}))</td>
</tr>
<tr>
<td>(\dot{R}_b)</td>
<td>0.5</td>
<td>Daily mean PAR ((\text{W m}^{-2}))</td>
</tr>
<tr>
<td>(t_s)</td>
<td></td>
<td>Fraction of surface PAR in the blue wavelength</td>
</tr>
<tr>
<td>(\Delta)</td>
<td></td>
<td>Time since sunrise (hours)</td>
</tr>
<tr>
<td>(\lambda_d)</td>
<td></td>
<td>Photoperiod (hours)</td>
</tr>
<tr>
<td>(\lambda_g)</td>
<td></td>
<td>Grazing rate on diatoms ((\text{umole C Kg}^{-1} \text{ind}^{-1} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(G_b)</td>
<td></td>
<td>Grazer abundance eating K. brevis ((\text{ind m}^{-3}))</td>
</tr>
<tr>
<td>(G_p)</td>
<td></td>
<td>Grazer abundance eating K. brevis ((\text{ind m}^{-3}))</td>
</tr>
<tr>
<td>(\lambda_dG_d)</td>
<td>([0.7G_dP_d])</td>
<td>Grazing pressure on diatoms ((\text{umole C Kg}^{-1} \text{ind}^{-1} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(\lambda_gG_p)</td>
<td>([0.005g_pP_b])</td>
<td>Grazing pressure on K. brevis ((\text{umole C Kg}^{-1} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(\Phi_f)</td>
<td>0.030</td>
<td>ufllagellate grazing pressure ((\text{umole C Kg}^{-1} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(w_d)</td>
<td>0.25 (P_d)</td>
<td>Diatom sinking velocity ((\text{m} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(w_b)</td>
<td>1.0</td>
<td>K. brevis migration velocity ((\text{m} \text{h}^{-1}))</td>
</tr>
<tr>
<td>(w_{100})</td>
<td>100.0</td>
<td>Sinking velocity of siliceous fecal pellets ((\text{m} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(w_{50})</td>
<td>30.0</td>
<td>Sinking velocity of nonsiliceous fecal pellets ((\text{m} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(w_{fd})</td>
<td>0.05</td>
<td>Remineralization rate of siliceous fecal pellets ((\text{d}^{-1}))</td>
</tr>
<tr>
<td>(w_{100})</td>
<td>30.0</td>
<td>Remineralization rate of nonsiliceous fecal pellets ((\text{d}^{-1}))</td>
</tr>
<tr>
<td>(\alpha_{fd})</td>
<td>0.05</td>
<td>Dissolution rate of particulate silicate ((\text{d}^{-1}))</td>
</tr>
<tr>
<td>(\alpha_{100})</td>
<td>0.05</td>
<td>Dissolution rate of particulate silicate ((\text{d}^{-1}))</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.01</td>
<td>Dissolution rate of particulate silicate ((\text{d}^{-1}))</td>
</tr>
<tr>
<td>(e_f)</td>
<td>([0.85, 0.85, 0.85])</td>
<td>Fraction of grazed phytoplankton respired to DIC</td>
</tr>
<tr>
<td>(k_{\text{NO}_3})</td>
<td>([1.05, 0.20, 0.50])</td>
<td>Half-saturation constant for nitrate ((\text{umole N Kg}^{-1}))</td>
</tr>
<tr>
<td>(k_{\text{NH}_4})</td>
<td>([1.50, 0.20, 0.50])</td>
<td>Half-saturation constant for ammonium ((\text{umole N Kg}^{-1}))</td>
</tr>
<tr>
<td>(k_{\text{SiO}_4})</td>
<td>([1.15, 0.0, 0.0])</td>
<td>Half-saturation constant for silicate ((\text{umole N Kg}^{-1}))</td>
</tr>
<tr>
<td>(k_{\text{CO}_2})</td>
<td>0.10</td>
<td>Half-saturation constant for nitrification ((\text{umole N Kg}^{-1}))</td>
</tr>
<tr>
<td>(k_t)</td>
<td>0.04</td>
<td>Attenuation coefficient for blue light at 443nm ((\text{m}^{-1}))</td>
</tr>
<tr>
<td>(k_r)</td>
<td>0.40</td>
<td>Attenuation coefficient for red light at 670 nm ((\text{m}^{-1}))</td>
</tr>
<tr>
<td>(k_c)</td>
<td>([0.035, 0.057, 0.035])</td>
<td>Attenuation coefficient for chlorophyll ((\text{m}^{-1}))</td>
</tr>
<tr>
<td>(k_p)</td>
<td></td>
<td>Algal specific light attenuation coefficient ((\text{m}^2 \text{mg chl}^{-1}))</td>
</tr>
<tr>
<td>(X_i)</td>
<td></td>
<td>Attenuation of blue light by CDOM as a function of salinity ((\text{m}^{-1}))</td>
</tr>
<tr>
<td>(X_{fd})</td>
<td></td>
<td>Nitrification rate - water column ((\text{umoles N Kg}^{-1} \text{d}^{-1}))</td>
</tr>
<tr>
<td>(X_{100})</td>
<td></td>
<td>Nitrification rate - sediment ((\text{umoles N Kg}^{-1} \text{s}^{-1}))</td>
</tr>
<tr>
<td>(\beta_r)</td>
<td>0.01</td>
<td>Dissolution rate of particulate in sediment ((\text{d}^{-1}))</td>
</tr>
<tr>
<td>(\lambda_f)</td>
<td>0.05</td>
<td>Degradation rate of particulate organic carbon in sediment ((\text{d}^{-1}))</td>
</tr>
<tr>
<td>(K_{b})</td>
<td>(2.0 \times 10^{-10} e^{0.092T_b})</td>
<td>Bioturbation coefficient in relation to bottom temperature (T_b) ((\text{m}^2 \text{s}^{-1}))</td>
</tr>
<tr>
<td>(K_{p})</td>
<td>(3.5 \times 10^{-10})</td>
<td>Porewater diffusion coefficient ((\text{m}^2 \text{s}^{-1}))</td>
</tr>
<tr>
<td>(\text{chl})</td>
<td>([0.50, 0.05, 1.00])</td>
<td>Chlorophyll content ((\text{x} 10^{-3} \text{ug chl cell}^{-1}))</td>
</tr>
<tr>
<td>(C/\text{Chl})</td>
<td>([50, 100, 30])</td>
<td>Particulate organic carbon/chlorophyll ratio ((\text{ug} / \text{ug}))</td>
</tr>
</tbody>
</table>

Slope to both the 30-m and 45-m isobaths. However, given a maximum diatom growth rate of 1.1 \(d^{-1}\) at 20°C and a half-saturation constant of 1.05 umol NO\(_3\) kg\(^{-1}\) (Table 2), these WFS diatoms should have accumulated 10 \(\mu\text{g} \text{ chl L}^{-1}\) within a few days, not over a few weeks.

During this period, SeaWiFS imagery indicated that a major southwestward export of surface color had occurred, progressing from coastal waters in the Big Bend region to the Dry Tortugas [Jolliff et al., 2003] and following the trajectory of previous surface drifters [Yang et al., 1999]. As in May, the early June 1998 extracted chlorophyll was fivefold less than the satellite estimate, where ground truth data were available. These results suggested an export of mainly CDOM− perhaps 80% of the color signal− within the surface Ekman layer. After this time, surface stratified waters (Figure 4a) had <0.1 umol NO\(_3\) kg\(^{-1}\) (Figure 4b) and a mean del\(^{15}\)PON value of \(\sim+8.0\)\% on 7 July 1998 (Table 1), i.e., the expected final isotopic signature of nitrate-stripped source waters.

3.1.2. Model Results

Details of the computed flow fields are given in this volume [Weisberg and He, 2003]; their consequences are presented here. As in the real world (Figure 3a), when strong coastal upwelling by the Loop Current and large CDOM loading prevailed in the first case, the 1 umol NO\(_3\) kg\(^{-1}\) isopleth of the near-bottom nitrate field penetrated to the ~20-m isobath in the Big Bend region by 19 May (Figure 7a). On the 30-m isobath off Sarasota, 1.4 umol NO\(_3\) kg\(^{-1}\) was computed there at 1 m above the bottom (Table 3), similar to that inferred from sparse observations (Figure 4b). With neither the Loop Current nor the CDOM-induced light limitation, however, the 1 umol NO\(_3\) kg\(^{-1}\) isopleth of the second case instead penetrated to only the ~35-m isobath in the Big Bend region by 19 May (Figure 8a), while just ~0.1 umol NO\(_3\) kg\(^{-1}\) was then simulated off Sarasota (Table 3).

Later on 8 June, the first case of strong flows, CDOM light limitation, and consequently smaller primary production and algal biomass (Figure 7d) yielded near-bottom recycled nitrogen stocks of >1 umol NH\(_4\) kg\(^{-1}\) along the inner shelf between Apalachicola and Tampa Bays (Figure 7b), similar to the NEGOM observations during July–August 1998 (Figure 6b). On the Sarasota line, 0.8 umol NH\(_4\) kg\(^{-1}\) had formed at the 30-m isobath in the first
case by then (Table 3). In contrast, the near-bottom pool of
>1 umol NH₄ kg⁻¹ of the second case was simulated much
farther offshore on 8 June, along the ~75-m isobath of the
outer shelf (Figure 8b). Inside the 20-m isobath of the
Panhandle, maximal near-bottom ammonium stocks
(denoted by “M”) on June 8 were 2.9 umol NH₄ kg⁻¹ in
the first case (Figure 7b), compared to 8.0 umol NH₄ kg⁻¹
in the second (Figure 8b).

[25] The near-bottom silicate fields of the two cases on
8 June (Figures 7c and 8c) exhibited the same tongue-like
feature of upwelled water, moving southeast along the
40-m isobath. In both cases, the microflagellates of the Big Bend
region were then the dominant phytoplankton group of
~1.2–1.6 ug chl L⁻¹, compared to 0.2–0.3 ug chl L⁻¹ of
diatoms and <0.1 ug chl L⁻¹ of K. brevis. Thus the
unutilized 1.2–2.4 umol SiO₄ kg⁻¹ simulated off Sarasota
on June 8 did not induce Si limitation of diatoms in either
case (Table 3), while their maximal stocks were the same
(14.2–14.4 umol SiO₄ kg⁻¹) on the Alabama shelf
(Figures 7c and 8c).

[26] The CDOM limitation of case 1 allowed only 1.9
watts m⁻² of PAR to reach bottom on June 8 off Sarasota,
compared to a penetration of 13.9 watts m⁻² in the second
scenario (Table 3). Consequently, the diatoms were light-
limited over 38% of the water column in case 1, but not at
all in case 2. Nitrogen limitation was more severe in case 2,
however, as a result of upstream depletion, yielding
smaller amounts of total phytoplankton biomass. At this
point, microflagellates were the winners in both cases of
the models off Sarasota (Figures 7e–7g and 8e–8g), with
most of their primary production consumed by protozoans
(Table 3).

[27] Much larger differences of phytoplankton biomass
between the two cases were simulated on the northern WFS,
where 4.5 ug chl L⁻¹ were predicted off Apalachicola in the
second (Figure 8d), compared to 1.6 ug chl L⁻¹ in the first
(Figure 7d). Here, diatoms and microflagellates were codo-
minants in the CDOM-free case. How realistic are such
phytoplankton accumulations in the absence of terrestrial
CDOM? May they instead represent other microflora, sea
grass, and macroalgae, not considered as state variables of
this model? We shall find that these nearshore maxima
increased to 19.2–21.1 ug chl L⁻¹ by 7 August in both
cases (Figures 9d and 10d), in case 1, because of greater
onshore flows in the bottom Ekman layer, and in case 2,
because of no light attenuation by CDOM.

3.2. Summer Slow Down: Doldrums, Downwelling,
and Diazotrophs

3.2.1. Observations

[28] The anomalous west winds in the northern Gulf of
Mexico continued during June–July 1998 (Figure 2a), such
that the August 1998 sea surface temperatures near the
Panhandle coast remained ~2°C colder than on the Alabama
shelf [Muller-Karger, 2000]. The NEGOM/ECOHAB/
HyCODE nutrient data also indicated that deeper source
waters now impacted the outer WFS between Pensacola and
Tampa, with a mean bottom water stock of 21.1 umol NO₃
kg⁻¹ in August at the 200-m isobath (Figure 3b), compared to
14.4 umol NO₃ kg⁻¹ in May (Figure 3a). However, the
local upwelling favorable winds were weaker, because
summer south winds now prevailed off Sarasota, as part of
the usual seasonal transition [Yang and Weisberg, 1999].

[29] During the last half of July and the first week of
August 1998, a weak downwelling circulation was found at
the ADCP arrays (Figure 1) under local south winds, such
that near-bottom stocks continued to be <0.1 umol NO$_3$ kg$^{-1}$ at the 30-m isobath (Figure 4b). Yet, the surface phytoplankton populations had the lowest del15PON value of +2.7% on 7 August 1998 (Table 1), despite stocks of ≤0.01 umol NO$_3$ kg$^{-1}$ over the upper water column. Although the supply of nitrate from the major spring intrusion of slope waters had now been depleted, uptake of the enriched15N nitrate left behind in the water column was evidently not the major new nitrogen signal, implying that nitrogen fixation was instead the source of PON. Indeed, surface colonies of WFS *Trichodesmium* had del15N values of −0.6 to −0.8% during September/October 2000 (Table 1).

3.2.2. Model Results

The MODIS CDOM algorithm indicated that most of the dissolved color signal was flushed from the WFS by the end of June in the real world [Jolliff et al., 2003]. Thus our case 1 results of the near-bottom nitrate on 7 August (Figure 9a) reflected too much light limitation by CDOM, with too little nitrate utilization by the phytoplankton (Figure 9d). The 1 umol NO$_3$ kg$^{-1}$ isopleth of near-bottom nitrate remained at the 20-m isobath of the Big Bend region in case 1 (Figure 9a). In contrast, it was found along the 65-m isobath (Figure 3b) and simulated there in case 2 (Figure 10a). Consequently, <0.1 umol NO$_3$ kg$^{-1}$ was left unutilized off Sarasota on 7 August in case 2, compared to 5.5 umol NO$_3$ kg$^{-1}$ predicted by case 1 (Table 3). Nitrate limitation then prevailed over 70% of the simulated CDOM-free, well-lit water column, suggesting that a much larger del15PON value than +2.7% should have been measured, if nitrate were the only source of new nitrogen.

Figure 7. The computed (a) near-bottom 19 May nitrate field in relation to both the near-bottom 8 June fields of (b) ammonium, (c) silicate, and (d) chlorophyll and the Sarasota June sections of (e) diatom, (f) microflagellate, and (g) *K. brevis* chlorophyll stocks under CDOM and Loop Current forcings. The 20, 50, and 200-m isobaths are delineated by dashed lines, and the location of the maximum value is denoted by the symbol M.
No silica limitation of diatoms pertained in case 2 at the 30-m isobath of the Sarasota line (Table 3), but farther offshore a minimum of <0.9 umol SiO$_4$ kg$^{-1}$ was computed on 7 August (Figure 10c), again similar to that measured (Figure 6c) and not simulated in case 1 (Figure 9c). During all of August in case 2, diatoms were silica-limited along the 40–50 m isobaths from the Big Bend region to the Sarasota section. Ammonium was more effectively recycled than silicon in case 2, with a maximum accumulation of >2 umol NH$_4$ kg$^{-1}$ in outer shelf regions (Figure 10b), where near-bottom silicate stocks were minimal.

The total phytoplankton biomasses of 1.0–3.4 ug chl L$^{-1}$ on the Sarasota line in both cases on 7 August (Table 3) were similar to those observed (Figure 4c), but the midshelf maxima of diatoms in case 2 was a more realistic depiction of cross-shelf observations. The complete floral composition and vertical distributions of the two scenarios...
were also very different (Figures 9e–9g and 10e–10g). A red tide of 2.0–2.7 ug chl L$^{-1}$ of K. brevis was predicted at depth of 3 m in case 1 (Figure 9g and Table 3), but not observed during ECOHAB/MOTE surveys. Only their background populations of 0.05 ug chl L$^{-1}$ were simulated in case 2 (Figure 10g) and found in August and September, such that their small bloom did not begin in the real world until November.

3.3. Fall Fertilization: Local Upwelling and Phytoplankton Blooms

3.3.1. Observations

[33] The Panhandle winds were no longer from the west during November 1998 (Figure 2a). Without upwelling in De Soto Canyon, the mean bottom water nitrate at the 200-m isobath had relaxed to 16.9 umol NO$_3$ kg$^{-1}$ in November 1998 (Figure 3c), compared to 21.1 umol NO$_3$ kg$^{-1}$ in August (Figure 3b), and 14.4 umol NO$_3$ kg$^{-1}$ in May (Figure 3a). Once this upstream supply was eliminated, decreasing amounts of slope water nutrients remained on the outer WFS to fuel diatom growth during successive fall upwelling events (Figure 4).

[34] For example, after initial destratification of the water column (Figure 4a), strong upwelling winds during 7–14 October 1998 provided 3.2 umol NO$_3$ kg$^{-1}$ to the 30-m isobath by 11 October (Figure 4b), compared to 0.7 umol NO$_3$ kg$^{-1}$ on 6 October. Here, the phytoplankton responded with another near-bottom biomass accumulation of 2.2 ug chl L$^{-1}$ (Figure 4c). Their surface del15PON value was now a mean of +3.6% (Table 1), reflecting both the expected fractionation of recently supplied nitrate and vertical mixing of phytoplankton throughout the upper water column.

[35] In contrast, after more upwelling-favorable winds during 4–7 November 1998, only 1.1 umol NO$_3$ kg$^{-1}$
and 0.7 umol SiO$_4$ kg$^{-1}$ penetrated to the 30-m isobath on 10 November (Figure 4b), producing the same near-bottom phytoplankton biomass of 2.5 ug chl L$^{-1}$ (Figure 4c). Moreover, the mean surface del15PON value was then 6.80% (Table 1), reflecting the enriched 15N left behind in the smaller pool of slope water nitrate.

3.3.2. Model Results

[36] During the November upwelling event, the stronger near-bottom flows in case 1 more faithfully replicated the observed nitrate field (Figure 3c) on 10 November (Figure 11a), compared to case 2 with no Loop Current (Figure 12a). Despite the greater near-bottom simulated stock of ~2.0 umol NO$_3$ kg$^{-1}$ off Sarasota in case 1, 81% of the diatom populations were still nitrate-limited (Table 3), consistent with the del15PON measurements (Table 1). Yet, the negative impact of CDOM light limitation in the models was more important in replicating the phytoplankton observations than the positive effect of greater nutrient supply.

[37] The near-bottom phytoplankton community of 1.7 ug chl L$^{-1}$ on 10 November in case 2 (Figures 12e–12g) instead matched the data (Figure 4c), whereas the near-surface 7.4 ug chl L$^{-1}$ of case 1 (Figures 11e–11g) did not. Furthermore, the floral composition of case 1 continued to be dominated by red tides, that were not found in the real world. A massive surface bloom of >5 ug chl L$^{-1}$ of *K. brevis* was incorrectly predicted from the coast out to the 50-m isobath (Figure 11g). Case 2 instead produced 0.1 ug chl L$^{-1}$ of *K. brevis* near the coast (Figure 12g) as found on the November MOTE/ECO-HAB surveys. Attenuation of light by the large red tide in case 1, only 0.02 watts m$^{-2}$ penetrated to the 30-m isobath (Table 3), allowed no development of the near-bottom diatom populations (Figure 11e), which were

Figure 9. The computed near-bottom fields of (a) nitrate, (b) ammonium, (c) silicate, and (d) chlorophyll in relation to the Sarasota sections of (e) diatom, (f) microflagellate, and (g) *K. brevis* chlorophyll stocks on 7 August under CDOM and Loop Current forcings.
simulated in case 2 (Figure 12e) and also observed (Figure 4c).

3.4. Winter Windows: Yuletide or Red Tide?

3.4.1. Observations

Despite upwelling favorable winds, no additional influxes of nitrate were found at the 30-m isobath (Figure 4b) after the 2 and 21 December events. One might expect the surface phytoplankton community to reflect these shortages of new nitrogen, with perhaps a similar value to the mean del15PON of +8.0% found in the July, September, and November populations (Table 1). Instead, the December del15PON mean value was +5.8%, suggesting possible bacterial reprocessing of the residues of pelagic and/or benthic nitrogen fixation [Walsh and Steidinger, 2001].

Samples dominated by *K. brevis* had positive del15-PON values of 3.6 to 5.1% in October 2000, 4.4% in October 1999, and 4.9% in December 1998 (Table 1). Values of +3 to 5% were found for the 2001 red tide as well. Organic nitrogen released from *Trichodesmium* spp., seagrasses, mangroves [O’Donohue et al., 1998; Corbett et al., 1999], and even agricultural leachates [Fryer and Aly, 1974; Kreitler, 1979] may all supply an isotopic nitrogen-fixation signal for *K. brevis*, such that specific DON supplies have yet to be identified [Heil et al., 2002; Lester et al., 2002]. However, in this analysis, we can at least address the null hypothesis that the amount of slope water nutrients would have been insufficient to support a red tide of ~5 µg chl L⁻¹ in December 1998 on the WFS.

3.4.2. Model Results

Without diatom removal of near-bottom nitrate in case1 during November, the failure of this model scenario became worse in December. By 15 December, case 1 incorrectly predicted 2.0 umol NO₃ kg⁻¹ along the inner shelf (Figure 13a), as far south as Sarasota (Table 3).

Figure 10. The computed near-bottom fields of (a) nitrate, (b) ammonium, (c) silicate, and (d) chlorophyll in relation to the Sarasota sections of (e) diatom, (f) microflagellate, and (g) *K. brevis* chlorophyll stocks on 7 August with neither CDOM nor Loop Current forcings.
Less than 0.1 umol NO\textsubscript{3} kg-1 were then observed (Figure 4b) and simulated there in case 2 (Figure 14a). In terms of diatom biomass, light limitation of case 1 (Figure 13e) and nitrate limitation of case 2 (Figure 14e) both yielded pigment stocks of \(\approx 0.5\) ug chl L-1 as observed (Figure 4c).

The case 1 red tide of >15.0 ug chl L-1 now extended out to the shelf-break during 15 December (Figure 13g), however, and was not seen by either SeaWiFS, or ECOHAB observers. Yet, case 2 predicted a red tide of only 0.5 ug chl L-1 near the coast (Figure 14g), where at least 5.0 ug chl L-1 were found between Tampa Bay and Fort Myers. In the real world, other supplies of both aeolian and estuarine nutrients are required to form a larger red tide than that now simulated in case 2 of the coupled models. Furthermore, an estuarine source of CDOM at the local scale of a convergence front is required to allow shade-adapted \textit{K. brevis} to both out compete diatoms and microflagellates, and aggregate over a region of smaller spatial extent, not the shelf-wide feature of the case 1 red tide.

4. Discussion

In response to upwelled intrusions of nitrate-rich slope water onto the WFS of our coupled models, diatoms won over both microflagellates and toxic dinoflagellates, if light limitation by CDOM was only applied over May–June and then deleted during July–December. Selective grazing stress and at times Si limitation completed a numerical description of how not to make a red tide! Given the models’ reasonable fidelity with the results of 18 cruises in 1998 (Figure 1), what are the implications for carbon cycling, its transfer to higher trophic levels, and its partition among phytoplankton competitors during this and other years?
Within low-salinity waters of 27.9–31.2 psu on the WFS, measured CDOM absorption at 412 nm and DOC stocks [Del Castillo et al., 2000], together with a spectral slope of 0.020 nm $^{-1}$ and a specific CDOC absorption of 0.15 l mg $^{-1}$ CDOC m $^{-1}$ [Walsh and Dieterle, 1994], suggested that CDOC stocks were 52–100% of the DOC concentrations at 443 nm during March, similar to prior estimates in April [Harvey et al., 1983; Carder et al., 1989].

In contrast, at a salinity of 36.2 psu, CDOC was only 10% of the DOC, such that the amounts of CDOC ranged from 202 umol L $^{-1}$ on the inner WFS to 12 umol L $^{-1}$ in the outer regions. The cross-shelf range of total DOC range was smaller, from 272 to 126 umol DOC L $^{-1}$.

Photodegradation studies of riverine CDOM, including Suwannee and Everglades sources, suggest a minimal photolysis rate of 0.15 umol CDOC L $^{-1}$ day $^{-1}$ over a 12-hour photoperiod [Keiber et al., 1990]. At such a rate, ultraviolet radiation within the upper 5 m of the WFS might take ~2 months to convert 190 umol CDOC L $^{-1}$ of macromolecular CDOM to small molecules of colorless DOM, and hence to DIC at perhaps a slower rate [Andrews et al., 2000]. Furthermore, we have found that the sediment microfloral biomass on the 10–60 m isobaths of the WFS is usually twofold to fourfold larger than those of phytoplankton in the overlying water column. Thus severe CDOM attenuation of light must be the exception on most of the WFS, not the norm.

A one-dimensional model of both phytoplankton and sediment microflora [Darrow et al., 2003] was able to replicate the demise of the April 1996 diatom bloom at the 27-m isobath of the Big Bend region [Hitchcock et al., 2000]. It also matched the subsequent seasonal increase of sediment pigments here, if CDOM absorption at 443 nm was <0.15 m $^{-1}$. Part of the near-bottom pigment stocks of

Figure 12. The computed near-bottom fields of (a) nitrate, (b) ammonium, (c) silicate, and (d) chlorophyll in relation to the Sarasota sections of (e) diatom, (f) microflagellate, and (g) K. brevis chlorophyll stocks on 10 November with neither CDOM nor Loop Current forcings.
19.2–21.1 µg chl L\(^{-1}\) on 7 August in both cases of the present 3-D model (Figures 9d and 10d) may thus represent ignored sediment microflora. *Cladophora* spp. are invasive green macroalgae [LaPointe and O’Connell, 1989], known colloquially as “June grass” along Panama City in the Panhandle. They washed ashore there during June 1998. With light saturation intensities tenfold greater than those of *K. brevis*, however, the macroalgae are probably confined to shallow waters, like the Big Bend seagrass beds of <4 m depth [Iverson and Bittaker, 1986].

If estuarine supplies of CDOM are usually restricted to depths of <10 m as a result of photolysis, allowing large amounts of benthic plants, then slope water intrusions may generally experience light regimes typified by the case 2 results. During August 1998, this simulated total primary production was \(~1.8\) g C m\(^{-2}\) d\(^{-1}\) along the 40-m isobath in the northern part of the WFS, with an accumulated biomass of >10.0 µg chl L\(^{-1}\) on the Florida Middle Ground (FMG) at \(\sim28^\circ\text{N}\)–\(28^\circ\text{N}\), 84\(^\circ\text{W}\)–84\(^\circ\text{W}\) (Figure 10d). Similar \(^{14}\)C estimates of 1–3 g C m\(^{-2}\) d\(^{-1}\) were made here by us during August 1992–1993, compared to <0.5 g C m\(^{-2}\) d\(^{-1}\) found and simulated farther south. In terms of carbon sequestration, this 3-D model, like previous 1-D ones [Walsh and Dieterle, 1994; Darrow et al., 2003] mainly evaded CO\(_2\) from the WFS (Table 3), although there were episodes of invasion, particularly in the Big Bend region as found in 1996 [Wanninkhof et al., 1997].

Diatom losses of \(~90\%\) of their daily carbon fixation to herbivores on the FMG in August of case 2 supported earlier impressions of a short, diatom-based food web in this region of the shelf. Here organic carbon content of surficial sediments is ten-fold those of the surrounding seabeds [Walsh et al., 1989], implying fallout of larger cells, i.e., diatoms [Gilbes et al., 2002]. With Apalachicola Bay and...
Alligator Harbor, spring diatom blooms of 5–7 µg chl L⁻¹ and productivities of ~1.7 g C m⁻² d⁻¹ have been reported in March–April [Marsh, 1956; Livingston, 1984]. The seasonal harvest of these neritic species, i.e., Chaetoceros and Rhizosolenia [Curt, 1959; Hopkins, 1966], was thought to fuel copepod and sardine populations over the northern half of the shelf [Khromov, 1969; Austin and Jones, 1974]. Episodic diatom blooms, driven by summer intrusions of slope water, may do the same.

In contrast, farther south off Sarasota the simulated copepods of case 2 only removed 0.04 g C m⁻² d⁻¹, about 25% of the diatom production, by November. The protozoans instead cropped most of the microflagellate yield (Table 3). Recall that little grazing loss was imposed on the small red tide of case 2. During September 1998, the estimated ingestion demands of the observed zooplankton community yielded the same crustacean grazing stress off Sarasota [Sutton et al., 2001]. At the 30-m isobath, they estimated that all of the zooplankton community may have removed 0.08 µg chl L⁻¹ d⁻¹, or 0.12 g C m⁻² d⁻¹ with diatom C/chl ratio of 50 (Table 2); that is, the copepods ate 34% compared to 66% by the larvaceans.

Although copepods generally shun K. brevis, those zooplankton grown on diatom-rich intrusions of slope water, as in 1998, may switch to toxic dinoflagellates, once prey stocks of diatoms are negligible. Top-down controls may thus possibly prevent formation of large red tides during years of strong upwelling, when supplies of Saharan dust, nitrogen fixers, and estuarine phosphorus may otherwise be sufficient [Walsh and Steidinger, 2001]. The role of local light shading by CDOM may be equally important as grazing, however, as demonstrated by the enormous red tide of case 1, in allowing surface populations of dark-adapted K. brevis to accumulate [Walsh et al., 2002].

Each year, K. brevis may need the CDOM of case 1 over a smaller coastal region of the WFS to avoid photo-

Figure 14. The computed near-bottom fields of (a) nitrate, (b) ammonium, (c) silicate, and (d) chlorophyll in relation to the Sarasota sections of (e) diatom, (f) microflagellate, and (g) K. brevis chlorophyll stocks on 15 December with neither CDOM nor Loop Current forcings.
inhibition [Millie et al., 1995]. During another red tide of 32 ug chl L\(^{-1}\) in October 1983, for example, a CDOM absorption of 0.30 m\(^{-1}\) still contributed 25% of the total color signal [Carter and Steward, 1985]. Furthermore, Trichodesmium is a source of CDOM [Jones et al., 1986], providing both sun screen and nutrients to K. brevis. Finally, the small del\(^{15}\)PON tag of the December phytoplankton community (Table 1) reflected nitrogen fixation, and we could not replicate that bloom in case 2 without a N\(_2\) source of new nitrogen.

[51] The local upwelling (Figure 15), focused by the bathymetry [Weisberg et al., 2000], may thus promote aggregation of and recycled nitrogen transfer between diazotrophs and K. brevis within nitrate-poor waters at salinity fronts of estuarine phosphorus supplies [Walsh and Steidinger, 2001; Lenes et al., 2001; Walsh et al., 2002]. Once a diatom, microflagellate, or dinoflagellate population is upwelled into surface waters of the coastal zone (Figure 15), all of these factors will come into play. Furthermore, the same local nearshore waters of the WFS that provide salinity fronts for aggregating diazotrophs and K. brevis, terrestrial P supplies, and CDOM sunscreen, may actually also contain the seeds of usual red tide demise, i.e., even in the absence of diatom-raised herbivores within slope intrusions.

[52] Given a choice of alternative food, most shelf copepods do not ingest K. brevis, but some will, for example, Acartia tonsa, if the toxic prey is present in high enough numbers [Turner et al., 1998]. During the October 1999 red tide of ~30 ug chl L\(^{-1}\), off Sarasota, both Temora turbinata and Centropages velificatus also appeared to eat K. brevis, with cells found in their mouths. Using an October 1999 stock of 4 ug dw L\(^{-1}\) of just A. tonsa above the 10-m isobath off Tampa Bay, a P/B ratio of ~0.5 [Heinle, 1966], a gross growth efficiency of ~0.15 [Marshall, 1973], a C/dw ratio of ~0.5 [Parsons et al., 1984], and a C/chl ratio of ~30 for K. brevis [Shanley and Vargo, 1993], their grazing stress could have removed ~13.3 ug chl L\(^{-1}\) of red tide over the next 60 days, passing brevitoxins to the higher trophic levels [Tester et al., 2000]. During ECOHAB surveys, the mean stock of K. brevis along this isobath in October 1999 was 13.7 ug chl L\(^{-1}\); it declined to 0.03 ug chl L\(^{-1}\) by December 1999.

[53] Since the mean near-surface flows at the ECOHAB arrays on the 10-m isobath were also offshore in an upwelling pattern during most of October–December 1999, as simulated in October–November 1998 (Figure 15), however, we do not yet know if the decline of the larger 1999 red tide was due to consumption by herbivores and/or offshore export by currents. The fate of these 1998–1999 red tides and others thus remains the subject of the next set of simulation analyses from our coupled biophysical models. We must now add explicit representation of both estuarine and sediment sources of phosphorus, nitrogen fixers, CDOM loadings, and frontal aggregations.

[54] However, we are pleased that a combination of cases 1 and 2 of the present model replicated field data on slope water intrusions of nitrate and silicate, regeneration of ammonium, light penetration, phytoplankton partition of primary production, grazing stresses, and carbon dioxide emissions on the WFS. Except under unrealisti-
10⁻⁵ ug chl cell⁻¹ implied a mixed diatom population of 90% small (8 um) and 10% large (50 um) forms of netplankton [Walsh et al., 2001], with a maximal growth rate of ~2.2 d⁻¹ at 30°C (Table 2).

The second functional group of small flagellates of 6–8 um size, a C/chl ratio of ~100, and a chlorophyll content of ~0.5 × 10⁻⁶ ug chl cell⁻¹ (Table 2) had a similar maximal growth rate of diatoms, i.e., ~1.8 d⁻¹ at 30°C. Selective grazing losses thus determined the initial outcome of their competition, until Si limitation prevailed in the model. When diatoms are present, copepods actively select this food item on the West Florida Shelf [Kleppel et al., 1996], whereas the mean grazing loss of smaller flagellates to microzooplankton is ~82% of their realized growth rate [Fahnenstiel et al., 1995] and the larger diatoms suffer less predation by ciliates [Strom and Strom, 1996]. Since few data were available on copepod biomass in 1998 [Sutton et al., 2001], we imposed grazing stresses on mainly diatoms, but not on K. brevis [Turner and Tester, 1997], as a function of their production. Flagellate losses to protozoans were a function of just the prey biomass (Table 2).

In contrast, K. brevis had a maximal growth rate of only ~0.8 d⁻¹ [Walsh et al., 2001] at 30°C. In our model, with a larger cellular content of ~1.0 × 10⁻⁵ ug chl cell⁻¹ (Table 2), reflecting their shade adaptation [Walsh et al., 2002]. K. brevis can utilize urea, vitamins, amino acids, and other forms of organic nitrogen at varying rates [Baden and Mende, 1979; Shimizu and Wrensford, 1993], providing a possible niche for these and other dinoflagellates [Dennison and Abal, 1999; Gilbert and Terlizzi, 1999]. Since, the amounts of the two forms of recycled nitrogen were similar on the West Florida Shelf (Figures 6a and 6b), and the half-saturation constant for NH₄ uptake by K. brevis [Steidinger et al., 1998] of 0.5 umol N kg⁻¹ (Table 2) was the same as that for urea, we used just the former to represent autochthonous nitrogen of the model, in which all groups consumed ammonium.

With selection of the highest half-saturation rate of 1.05 umol N kg⁻¹ for uptake of nitrate by diatoms (Table 2), we forced this group to be a neritic form, instead of an oligotrophic one with kNO₃ of <0.03 umol N kg⁻¹ [Harrison et al., 1996]. Diatoms had low affinity for ammonium in our model, with a maximal growth rate of ~2.2 d⁻¹ in the model. When diatoms are present, copepods actively select this food item on the West Florida Shelf (Figures 6a and 6b), and the half-saturation constant for NH₄ uptake by K. brevis (Table 2) was the same as that for urea, thereby the form of their biomass [Walsh and Dieterle, 1994], and the flagellates were neutrally buoyant.

The state equations of the biological model were solved over the curvilinear horizontal grid of the POM [He and Weisberg, 2002, 2003; Weisberg and He, 2003]. In the vertical dimension, this embedded model was partitioned into a water column of 20 layers of variable depth, d, and a benthic layer of well-mixed, 5-cm thick sediments. The state variables were: diatoms (Pᵣ), microflagellates (Pᵣ), K. brevis (Pᵣ), siliceous fecal pellets (Zd) of copepod origin, nonsiliceous fecal pellets (Zi) of protozoan and copepod origin, ammonium (NH₄), nitrate (NO₃), silicate (SiO₄), and dissolved inorganic carbon (DIC).

[56] The processes affecting their change with time, t, were expressed in sigma coordinates by

\[
\frac{\partial P_i}{\partial t} = \text{Tr}(dP_i) - \frac{\partial}{\partial \sigma} (\omega_i P_i) + \text{gbPb}_i d\omega_i - d\gamma_i G_i + d\gamma_i P_i
\]

[57] where the subscript “r” referred to the Redfield ratios of nitrogen and silicon to carbon. The “Tr(.)” term represented physical advective and diffusive transport; the advective transport was

\[
\frac{\partial (dP_i)}{\partial t} = - \frac{1}{h_1 h_2} \left[\frac{\partial}{\partial \xi} (\omega_i t dP_i) + \frac{\partial}{\partial \kappa} (\omega_i t dP_i) + h_1 h_2 \frac{\partial}{\partial \phi} (\omega_i t dP_i) \right]
\]

and diffusive transport was

\[
\frac{\partial (dP_i)}{\partial t} = \frac{\partial}{\partial \phi} \left(K_{b_i} \frac{\partial (dP_i)}{\partial \phi} \right)
\]
where B was any of the nine state variables above. Because of the strong implicit horizontal diffusion in the numerical algorithm for advective transport, we ignored explicit horizontal turbulent mixing, considering only the vertical component.

The carbon to silicate ratio of the siliceous fecal pellets, Z_d, was not fixed, like the Redfield ratios of the particulate silicon [Marinelli et al., 1998]. This changing ratio was modeled by the following auxiliary equation for the ingested particulate silicon, M_{Si}:

$$\frac{\partial M_{Si}}{\partial t} = \left[\sum \left(\frac{S_i}{C} \right) F(Z_d)_{adv} + \sum \left(\frac{S_i}{C} \right) F(Z_d)_{diff} \right] + \sum \left(\frac{S_i}{C} \right) F(Z_d)_{sink} \left/ V \right. \left. + \frac{S_i}{C} d_i L_d P_d - \beta M_{Si} \right] \quad (A12)$$

where F(Z_d)_{adv}, for example, represented the mass flux of Z_d at a numerical cell interface due to advection, which was multiplied by the silicate to carbon ratio of the incoming or outgoing flux, and the summation was over the six interfaces of the cell around each grid mesh. For the diffusive and sinking fluxes F(Z_d)_{diff} and F(Z_d)_{sink}, the summation was over just the upper and lower interfaces. The quantity V in the above expression was cell volume.

Within the sediment layer, equations (A1)–(A5) reduced to

$$\frac{\partial B_i}{\partial t} = K_h \frac{\partial^2 B_i}{\partial z^2} - \lambda_i B_i \quad (A13)$$

where B_i was P_{Pi}, P_{Pi}, Z_{d}, or Z_{f}, \lambda_i was the degradation rate, and the bioturbation coefficient, K_h was a function of bottom temperature [Walsh and Dieterle, 1994], supplied by the POM.

Equations (A6)–(A9) and (A12) for the remaining state variables instead became

$$\frac{\partial N_{H_4}}{\partial t} = \left(\frac{N_{H_4}}{C} \right) \sum \lambda_i B_i + K_m \frac{\partial^2 N_{H_4}}{\partial z^2} - X_{1s} \quad (A14)$$

$$\frac{\partial N_{O_3}}{\partial t} = K_m \frac{\partial^2 N_{O_3}}{\partial z^2} + X_{1s} \quad (A15)$$

$$\frac{\partial SIO_{4}}{\partial t} = K_m \frac{\partial^2 SIO_{4}}{\partial z^2} + \beta M_{Si} \quad (A16)$$

$$\frac{\partial DIC}{\partial t} = \sum \lambda_i B_i + K_m \frac{\partial^2 DIC}{\partial z^2} \quad (A17)$$

$$\frac{\delta M_{Si}}{\delta t} = \left(K_h \frac{S_i}{C} \frac{\partial Z_d}{\partial z} \right)_{d_i=1} - \left(K_h \frac{S_i}{C} \frac{\partial Z_d}{\partial z} \right)_{d_i=1} - \beta M_{Si} \quad (A18)$$

where K_m was the pore water molecular diffusivity [Fanning and Pilson, 1974]. No microbota utilized nutrients, unlike the previous WFS model [Darrow et al., 2003], allowing a maximum return of recycled nutrients to the water column for possible use by K. brevis.

The phytoplankton growth terms in equations (A1)–(A3) and (A6)–(A9) were given by

$$g_i = \min \left[\frac{\partial L(t, z)}{\partial t} \exp \left(1 - \frac{L(t, z)}{L_{1a}} \right) g_i, g_{i,sio} \right] \quad (A19)$$

$$g_{i,sio} = c_i \max \left[\frac{N_{O_3}}{K_{NO_3} + N_{O_3}}, \frac{N_{H_4}}{K_{NH_4} + N_{H_4}} \right] \quad (A20)$$

where subscript “i” was d, f, or b for diatoms, microflagellates, and K. brevis, respectively. The maximum growth rates, c_i, were a function of the 3-D temperature fields computed by the POM and doubled for every 10°C increase. The half saturation constants, K_{NO_3}, k_{NH_4}, and k_{SIO_{4}}, for nutrient uptake by the three algal groups are given in Table 2.

The light field was calculated [Fasham et al., 1983; Taylor et al., 1991] as a function of time of day, assuming a sinusoidal distribution over the photoperiod by

$$L(t, z) = I_0 \sin(\pi t/\Delta) \left[R_b e^{-[k_1 + CDM]z} + (1 - R_b) e^{-k_2 z} \right] e^{-k_3 z} \quad (A22)$$

where t was time since sunrise, \Delta the photoperiod, 0 < t/\Delta < 1, k_1 and k_2 were the respective attenuations by water of blue (443 nm) and red (670 nm) wavelengths [Paulson and Simpson, 1977], R_b was the fraction of blue surface light, and z was depth below the sea surface, with

$$k_e = \frac{1}{z} \int_0^z \left(k_d P_d + k_f P_f + k_b P_b \right) dz \quad (A23)$$

$$I_n = 24I_{p}(\pi/2\Delta) \quad (A24)$$

The daily mean PAR, I_{p}, constant over the shelf, was calculated from NCEP data [Kistler et al., 2001] as 50% of the 1998 monthly average of net surface shortwave fluxes at 27.6°N, 82.5°W. CDM was the attenuation at 443 nm of CDOM, computed from the POM’s salinity field, while the values of k_d and k_f were those of oceanic waters, not those of coastal CDOM-impacted ones.

The products of the specific grazing rates on diatoms and K. brevis-gamma_d,F - and the grazer abundances G_d and G_b were actually specified as a fraction of the previous day’s production (Table 2) since no time series of herbivore abundance was available for most of 1998: 90% for diatoms and 10% for the toxic dinoflagellates, respectively. If the average water column concentration of diatoms exceeded 10 ug chl L\(^{-1}\), the grazing loss was then set to 100% of the net photosynthesis in an attempt to mimic density-dependent mortality. The fraction of microflagellate biomass grazed per
day was instead only a function of the microflagellate standing stock, where a grazing coefficient of 0.075 was based upon sensitivity analyses of the model. In terms of the fate of grazed phytoplankton, 85% was respired to the CO2 pool of the DIC, with 15% egested as fecal pellets [Walsh et al., 1999].

The nitrification rate was modeled using a Michaelis-Menten expression:

\[
X_{n} = 0.04 \left(\frac{NH_{4}}{k_{\text{NH}} + NH_{4}} \right)
\]

where 0.04 umole N kg\(^{-1}\) d\(^{-1}\) was the maximum rate. Within the sediment layer, the nitrification rate was half the degradation rate [Florek and Rowe, 1983], i.e.,

\[
X_{n} = 0.5 \left(\frac{N}{C} \right) \sum \lambda_{Bi}
\]

A no-flux boundary condition was imposed along solid coastal boundaries. At the open boundaries (cross shelf off Mobile Bay and off the Florida Keys and along shelf at the 200-m isobath) time-dependent nitrate, ammonium, and silicate values were prescribed at inflow points using the NEGOM/ECOHAB cruises. Initial conditions were interpolated fields from the May 1998 NEGOM/MOTE cruises.

In the height coordinate, the vertical velocity in Tradv and the settling velocities \(w_{sB}, w_{sA}, w_{sA}d, \) and \(w_{sD} \) were identically zero at the air-sea and water-sediment interfaces. The diffusive fluxes were also set to zero at the air-sea interface in equations (A1)–(A8), whereas for equation (A9) it was described by

\[
K_{d} \frac{\partial DIC}{\partial \sigma} = 1.11 \times 10^{-5} W_{\alpha} \left[(pCO_{2}w) - (pCO_{2})_{0} \right]
\]

where \(W_{\alpha} \) was a constant wind speed of 5 m s\(^{-1}\) and alpha was the solubility of CO2 in seawater. The partial pressure of CO2 in air \((pCO_{2})_{w} \) was assumed to be 365 µatm. In the height coordinate, the vertical velocity in Tradv and the settling velocities \(w_{sB}, w_{sA}, w_{sA}d, \) and \(w_{sD} \) were identically zero at the air-sea and water-sediment interfaces. The diffusive fluxes were also set to zero at the air-sea interface in equations (A1)–(A8), whereas for equation (A9) it was described by

\[
K_{d} \frac{\partial DIC}{\partial \sigma} = 1.11 \times 10^{-5} W_{\alpha} \left[(pCO_{2}w) - (pCO_{2})_{0} \right]
\]

At the bottom of the sediment layer, all of the fluxes were zero.

Acknowledgments. This analysis was funded by grants NA76RG0463 and NA96OP0084 from the National Oceanic and Atmospheric Administration to JJJ, GAV, and RWL, and R 827085-01-0 from the Environmental Protection Agency to GAV, NAGS-6449 to JJJ and NASS-97128 to FMK from the National Aeronautics and Space Administration, OCS 99-0051 to FMK, 1435-0001-30808 to RWL, and 1435-01-97-CT-30581 to AEJ and DCB from the Minerals Management Service, as well as N00014-96-1-5024 to KAF, N00014-99-1-0212 to JJJ, and N00014-98-1-0158 to RWL from the Office of Naval Research. We also thank the State of Florida for support of JJJ, GAV, GJ, FMK, KAF, and RWL and Fred Lipschutz for the del\(^{15}\)PON data. This is ECOHAB contribution 55.

Walsh, J. J., and D. A. Dieterle, CO2 cycling in the coastal ocean. I. A numerical analysis of the southeastern Bering Sea, with applications to the Chukchi Sea and the northern Gulf of Mexico, Prog. Oceanogr., 34, 335–392, 1994.

G. J. Kirkpatrick, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.